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This paper concerns with the modelling of an unsteady natural convective and higher order chemically
reactive magnetohydrodynamics (MHD) fluid flow with the effect of heat and radiation absorption.
The flow is generated through a vertical oscillating porous plate. Boundary layer approximations is car-
ried out to establish a flow model which represents the time dependent momentum, energy and diffusion
balance equations. Before being solved numerically, the governing partial differential equations (PDEs)
were transformed into a set of nonlinear ordinary differential equation (ODEs) by using non-similar tech-
nique. A very efficient numerical approach solves the obtained nonlinear coupled ODEs so called Explicit
Finite Difference Method (EFDM). An algorithm is implemented in Compaq Visual Fortran 6.6a as a solv-
ing tool. In addition, the stability and convergence analysis (SCA) is examined and shown explicitly. The
advantages of SCA is its optimizes the accuracy of system parameters such as Prandtl number (P;) and
Schmidt number (S.).The velocity, temperature and concentration fields in the boundary layer region
are studied in detail and the outcomes are shown in graphically with the influence of various pertinent
parameters such as Grashof number (G,), modified Grashof number (G,), magnetic parameter (M), Darcy
number (D,),Prandtl number (P,), Schmidt number (S.), radiation (R), heat sink (Q),radiation absorption
(Q;), Eckert number (E.), Dufour number (D,),Soret number (S,), Schmidt number (S,), reaction index
(P) and chemical reaction (K;). Furthermore, the effect of skin friction coefficient (Cy), Nusselt number
(Ny) and Sherwood number (Sy) are also examined graphically.
© 2018 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

water systems, electronic cooling, boilers and nuclear process sys-
tems etc. Researchers are also interested in expanding their inves-

During the recent years, Magnetohydrodynamic (MHD) natural
convection heat and mass transfer flow [1-10] is of significant
attention in geophysics, engineering and industrial technology
due to its wide range technical fields. This study finds numerous
applications in industrial manufacturing processes such as the
aerodynamic extrusion of plastic sheets, liquid metal fluids, biolog-
ical transportation, oil reservoirs, geothermal systems, high-
temperature plasmas, energy storage units, heat insulation and
metal and polymer extrusion and micro MHD pumps etc. MHD
flow through porous media is a major area of research for its wide
range applications such as thermal energy storage devices, ground
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tigation on infinite vertical insulated porous plate [11], inclined
porous plate [12], vertical porous plate [13-16], semi-infinite ver-
tical porous plate [17] and vertical moving porous plate [18] etc.
In many chemical engineering and hydrometallurgical prac-
tices, it is required to investigate the influence of chemical reaction
on heat and mass transfer flow because of the growing need for
chemical reactions. This study is further plays outstanding role
industries such as chemical industry, power and cooling industry
for the applications of evaporation, flow in a desert cooler, energy
transfer in a cooling tower, drying etc. Devi et al. [19] investigated
chemical reaction effects on heat and mass transfer MHD boundary
layer laminar type flow over a wedge considering suction/injec-
tion. Kandasamy et al. [20] studied chemical reactive MHD flow
through a stretching surface with the effect of thermal stratifica-
tion and heat source. The study of MHD temperature dependent
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Nomenclature

Bo magnetic component

Cr skin-friction

G specific heat at constant pressure
D, Darcy number

D coefficient of mass diffusivity

Dy Dufour number

E. Eckert number

G, Grashof number

Gc modified Grashof number

K/ permeability of the porous medium
Kr chemical reaction parameter

ke mean absorption coefficient

Ny local Nusselt number

P, Prandtl number

qr unidirectional radiative heat flux
Q1* radiation absorption

Qo heat absorption quantity

Sc Schmidt number

Sh Sherwood number

Sr Soret number

Uo uniform velocity

u, v velocity components
X,y Cartesian co-ordinates

Greek symbols

thermal conductivity

density of the fluid

dynamic viscosities

kinematic viscosity

thermal expansion co-efficient
concentration expansion co-efficient
thermal conductivity

S Stefan-Boltzmann constant

*

QAR <TED Q

viscosity and thermal diffusive flow with Hall and ion-slip currents
with the influence of chemical reaction was carried out by Elgazery
[21].The analysis of a first-order chemical reaction on MHD ther-
mosolutal Marangoni convection flow was examined by Zhang
and Zheng [22]. This field of study is still getting a lot of attention
in recent years [23-31] for controlling the hydrodynamics beha-
viour of the fluid flow.

The fluid flow rising from the field of temperature and material
difference is further applied in biochemical engineering, chemical
engineering, geothermal reservoirs, aeronautics and astrophysics.
The effect of presence of radiation absorption on the fluid flow is
very significant from the scientific point of view. An example is
arisen of this application in the planetary atmosphere where there
is radiation absorption from nearby stars. Further industrial appli-
cations can be encompassed such as oil reservoirs, heat insulation,
catalytic reactors, reactor safety, geothermal systems etc. Ibrahim
et al. [32] reported the effect of radiation absorption on transient
MHD free convection flow. Rubio Hernandez [33] analysed a Net-
work numerical analysis on unsteady MHD fluid flow through a
porous medium with the influence of radiation absorption. Satya
Narayana [34] investigated radiation absorption effects on MHD
micropolar fluid flow in a rotating system. A study of free convec-
tive boundary layer flow with an aligned magnetic field in presence
of radiation absorption was carried out by Reddy et al. [35]. The
study of motion of fluids of magnetic field and thermal radiation
effect on heat and mass transfer of air flow near a moving infinite
plate with a constant heat sink has been studied by Arifuzzaman
et al. [36] with Perturbation technique. The combined action of
bouncy forces due to both thermal and mass diffusion in the pres-
ence of thermal radiation and chemical reaction are observed in
nuclear reactor safety, solar collectors and combustion technique.
Momentum boundary layer and thermal boundary layer presenta-
tion with the streamlines and isotherms has been studied by Rana
et al. [37] in effect of radiation on unsteady MHD free convective
flow past an exponentially accelerated inclined plate. A few more
recent studies [38-41] can also be found where the radiation
absorption parameter has a significant importance.

In many engineering applications including strength of radioac-
tive materials, reactor safety analysis, spent nuclear fuel, fire and
combustion, metal waste etc., it is very important to understand
the effects of heat generation. This parameter is significant in
numerous physical difficulties dealing with chemically reactive
process and drives several phenomena (temperature distribution,
particle deposition rate etc.) involve natural convection. The heat

generation effects, MHD, heat and mass transfer flow has been
studied by several researchers [42-47]|. Recently, Reddy et al.
[48] reported heat generation/absorption effects on MHD convec-
tive fluid flow (Al,Os-water and TiO,-water nanofluids) past a
stretching sheet in porous media. Srinivasa and Eswara[49] inves-
tigated the effect of heat generation on transverse magnetic-
convective flow of an incompressible and electrically conducting
fluid near an isothermal truncated cone. More recently, an analyt-
ical study MHD three-dimensional Oldroyd-B nanofluid flow with
the effect of presence of heat generation/absorption is carried out
by Hayat et al. [50]. Venkateswarlu and Satya Narayana [52] stud-
ied heat transfer flow of a nanofluid in a rotating system with the
effect of radiation absorption and chemical reaction. Babu et al.
[53] investigated the influence of radiation absorption on MHD
transient free convection flow of a micropolar fluid through a por-
ous medium of variable permeability over a vertical moving porous
flat plate.

To the best of the author’s knowledge, the study of transient
MHD natural convective and chemically reactive high-speed fluid
flow through an oscillatory vertical porous plate in presence of
heat and radiation absorption has remained unexplored. Therefore,
this phenomenon is addressed in this study. The results have been
reported so far for MHD single-phase flow whilst hydrodynamic
studies on high speed flow are reported only rarely. Application
for high speed MHD are specially use in flow in the blanket (porous
medium) of a nuclear fusion reactor, liquid metal MHD different
phase flow power-generating etc. In the present investigation,
the basic equation was derived, analysing the utmost MHD effects
on flow momentum and energy transfer. For this reason, MHD
term was also imposed in the thermal boundary layer equation.
Theoretical solution for the effect of magnetic field on small
convection-generating conditions was encompassed. The specific
aims of this article are listed below:

To study the problem of unsteady chemically reactive fluid flow
through a semi-infinite vertical porous plate with influence of ther-
mal radiation, thermal and mass diffusion and radiation absorp-
tion, following steps have been carried out:

a) To solve the governing flow model including time dependent
momentum, energy and diffusion balance equations numer-
ically using well-known explicit finite difference method
(EFDM).

b) Explicitly analyses the stability and convergence analysis
(SCA) for optimizing the numerical value of flow parameters
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as well as the high accuracy of the numerical investigation
(EFDM).

¢) To investigate the flow field distribution such as velocity,
temperature and concentration across the boundary layer.
Further investigation on system parameters effect of skin
friction coefficient, Nusselt number and Sherwood number.

d) In addition, evaluate the momentum boundary layer and
thermal boundary layer thickness with streamlines and
isotherms.

2. Mathematical model of flow

Unsteady natural convective heat and mass transfer fluid flow
along a semi-infinite vertical porous plate has been studied. In
Fig. 1, y-axis is designed as normal to the vertical porous plate
and the theoretical fluid flow analysis is considered in presence
of uniform magnetic field, chemical reaction and thermal radiation.
The flow is in the x-direction which is taken along the plate in the
upward direction and y-axis is normal to it. For t >0, the plate
velocity, U(t), oscillates with a frequency,y, where the velocity on
the wall can be expressed as u = Uy cos (yt). More precisely, the
plate commences oscillation at y = 0 according to u = Uy cos(7t).
Where, Uy (constant) is the amplitude of the motion.

Initially, it is considered that the plate as well as the fluid par-
ticle is at rest at the same temperature T(= T,,) and the same con-
centration level C(= C,.) at all points. Where, C,, and T, are fluid
concentration and temperature species of uniform flow respec-
tively. It is also assumed that a magnetic field B, = By of uniform
strength is applied normal to the flow region. The physical config-
uration and co-ordinate system of the problem is presented in the
following Fig. 1.

Continuity Equation:

ou ov

Momentum Equation:

ou ou . du 8u aBu v
o VTV Vo 5+ 8T —Tx) +8p (C—Cx) - -

Velocity profiles

Temperature/ Concentration profiles

z
2

- L

Variation of phase angle

Fig. 1. Physical configuration and coordinate system.

Energy Equation:

or o oT _ Kk &T v (o)’
ot 0x ay  pcy, Y2 ¢ \Oy
_L%_&( —-T.)+ Q1 (C—C.)
pCy Oy pCy PCp
1R2 4,2 vj
n o0'Bgu®  DpKr % 3)
PCp CsCp Oy
Concentration Equation:
aC aC  aC &#C\  Dnicr &°T
8t+u8x+ 8y Dm<6y2>+ 0 E)_yZ_KC(C C.)f (4)

With boundary condition,

u="Uycos(yt), T=Ty, C=Cyaty=0
u=0,T=T,, C=Cgaty — o0

Where, u and v are the velocity component, B, is the magnetic
field component, 8 is thermal expansion coefficient, 8* is concen-
tration expansion coefficient, T,, denotes the wall temperature,

w 1S the species concentration at the wall, v is the kinematic vis-
cosity, p is density, x is thermal conductivity, ¢, is specific heat
at constant pressure, Q, denotes the heat sink, Q] denotes the radi-
ation absorption, g, unidirectional radiative heat flux, K. for chem-
ical reaction, D,, is coefficient of mass diffusivity, y denotes
oscillating frequency, m is mass per unit area. The radiative heat
flux term by using the Rosseland approximation [51] is given by

__do 0T
G ="3 oy"

where, o, is the Stefan-Boltzmann constant and k. is the mean
absorption coefficient, respectively. If temperature differences
within the flow are sufficiently small, then the g, can be linearized
by expanding T* into the Taylor series about T., which after
neglecting higher order terms takes the form by T* = 4T3 T — 3T .
Then the Eq. (3) becomes,

or or, o Kk 2T v (ou\* 160,13 &°T
ot Tax Ay pcy, a2 ¢y \dy 3kepc, Oy?
/R24,2
Q) G,y DB
PGy PG PGy
2
Pulter 0. (5)
csCp  Oy?

From the governing Eqs. (1)-(5) under the initial conditions and
the boundary conditions will be based on the finite difference
method it is required to make the equations dimensionless. For
the purpose introducing the following dimensionless quantities:

on yuO B B tug T-T.

Xx="2y=220 U= U—Ov U_o 2.0= i
C—Cx
¢_CW7C001

So, x_a’,y Y“u_UUOtf—T:TOC—H)(TW—TOQ) and
0

C=Co+d(Cw— Cx)
Dimensionless Governing equations,

U U
U 9U _aU  9*U 1
E+U6—X+V8Y 72 ——+G0+Geop — MU—[TU (7)
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a0 80 a0 1 16R\ 9%0
%+WU+VW*E<1+T>W*Q9+Q1¢
oU\? P 5
+EC<W> + D, 8YZ+ECMU 8)
op L 0p 0p 1Py PO .
aﬁ”ax Vay 5 8Y2+ "oy K ¢ 9)

Boundary conditions,
u="Upy cos(wt), T=1,C=1aty=0
u=0,T=0,C=0aty —»

Where, the dimensionless parameters are,

Grashofnumber, G, = ‘M,

UO
massGrashofnumber. G, ‘%,

1 R2
magneticparameter, M = a 30207

PY

2

Darcynumber, D, = Kl/)(;’(’ ,
Prandtlnumber, P, = %,

L oT>,
radiationparameter, R = ——,

koK
. v
heatsinkparameter, Q = %0 ,
Uopcy
L . 0
radiationabsorptionparameter, Q; = (221 ,
Uopcp

phaseangle = wt[Where,w = %},
0
U

Eckertnumber, E; = —————,
T p(Tw—Tx)

Dufournumber, D, = Duicr <Cw - Cm>7
0 \Tyy — T,

D,
Soretnumber, S, = T’",

L

Schmidtnumber, S, = Do(Tw —To)

P = Order of chemical reaction and
VK (Cy — Coo)P !

2
0

chemicalreaction, K, =

Stream function i satisfies the continuity Eq. (6) and is associ-
ated with the velocity components in the usual way as,
N N
U= A V= X
The parameters of technological interest for the present prob-
lem are the local skin-friction, the local Nusselt number and the
local Sherwood number, which are elucidated as

1 34 <8U>
Cr=——-=G 10
1==27 \av),., (10)

ML) a

1 34(0¢
-z ().

3. Numerical solution

To solve the governing second-order coupled non-dimensional
partial differential equations with the associated initial and bound-
ary conditions. The method of explicit finite difference has been
used to solve (6)-(9) subject to the initial and boundary conditions.
For this reason, the area within the boundary layer is divided by
some perpendicular lines of Y-axis, where the normal of the med-
ium is Y- axis as shown in Fig. 2. It is assumed that the maximum
length of boundary layer Y.« = 20 as corresponds to Y — oco. i.e.Y
vary from 0 to 20 and the number of grid spacing in Y directions are
m(=100) and n(=200), with the smaller time step At = 0.005.

Using the explicit finite difference approximation, we have,

Uij — Uiy . Vij—Vij

AX av 0 (13)
U;jA_TUiJ LU Ui; ;}gi—l‘j vy Ui.j+1A; Ui;
Uijr1 — 2Uij + Uija 1
=Wt (AY)JZ 1=+ G0 + Geyj — <M + E) Uij (14)
HQJA::H“ U 0ij ;}?pu e 0i,)‘+1A; 03
_1 (1 N ER) Oiji1 — 29u2+ 01 D, Piji1 — 2¢z:j2+ Pija
P, 3 (AY) (AY)
Uiing — U\ 2
*QQ{j‘FQ]d’ijﬂ*Ec(%yu) +EcM(UiJ)2 (15)
¢;1A_T¢i.j U by ;}?i—u’ LV d’i.jﬂA ; bij
2 L
:Sl (buﬂ (/’1,/2"" ¢1J—1 Sr 1,/+1 201] + 91] 1 _ I<r(¢ij)p (16)
; (AY) (AY)?
X
i=m
i+2
el (i+ L) (L ) G4 7 +1)
; (i, 7=\, ) (7 +1)
T AX
i—1
(i j=0)(-1j)(i-1, f+1)
i-2
AY
i=0 Y

j=0 j-2 j-1 j o J+l j+2  j=n

Fig. 2. The finite difference space grid.
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The initial and boundary condition with finite difference
scheme as

Uiy = cos(w1), 0]y =1, ¢jy =1

Ui, =0, 6], =0, ¢}, =0 Where,L — oo

where, the subscripts i and j designate the grid points with X and Y
coordinates respectively and a value of time, T =nAt, where
n=1,234......

]

4. Stability and convergence analysis of the problem

Here, an explicit finite difference method is being used. The
analysis is remained incomplete unless the stability and conver-
gence of the finite difference scheme are discussed. For the con-
stant mesh size, the stability criteria of the scheme may be
established as follows. The general terms of the Fourier expansion
for U,0 and ¢ at a time arbitrarily called t = O are all e®*e" apart
from a constant, wherei = v—1.A time t = 7, these terms becomes,

Uy (T)e™eifY
0 : 0(t)e™XeihY (17)
@ . (p(T)eiaXei/jY

After a time step these terms convert to
U -/ (T)eiXelf¥
0:0'(1)eXeiY (18)
(P . (p/(l.)eiaxei/?}’

Substituting (1) and (2) to the main (13)-(16) equation we get,

1 2 AY — 1
v =¢1(r)+Ar{Gr9+Gc<P* (M+H>¢l *%‘”1

U(l _ eiaAX) V(eiﬁAY _ 1)
AX T Ay N
, 2(cos fAY — 1) ( 1 ) UAT(1 — e*AX)
>y =1+ A T ———— AT M+ | —————
4 { (AY)? D, AX
VA iBAY —-1

7%}% + ATGr0 + ATGc

Wy = Ay + A0+ Az (19)

_plaAX ifAY _
where, AT(M + ) — Saipr—) — YAre =1,

2 AY -1
A =1 +A‘L’%—

Y)
A, = A1G, and A; = AtG,. For temperature equation,

o _0+Ar{; <1+13ﬂ) 20(co(sAﬁYA)Zfl) Duzw(cczsA/;?;/fl)
-Q0+ Qi +Ec(eiﬁZyY; b’ ,-ua ;;“AX) "
—%%JFECMM

J{”%(”?)%ﬂmfw
7%]“{2@”@% o
+ECArU(eI(ﬂ:YY1)2% +E ATM!//I

For obtaining the stability condition, we have to find out Eigen
values of the amplification matrix T, but this study is very difficult
since all the elements of T are different. Hence, the problem

requires that the Eckert number (E.) is assumed to be very small,
that is, tends to zero. Then we get,

AT 16R\ 2(cos pAY — 1) UAT(1 — e*AX)
0=01+— (14— )22 20 Qar——+ =
[ P ( 3 ) (AY)? Q AX

VAT(efs —1) 2At(cos BAY — 1)
,T} + {QlATJFDuT @
0r = A40 +A5<D (20)
where, As=1+ M( + 1gR) (co(sAﬁyAY 1) — QAT - UAT(1— e”‘AX) VAI(eA”:fY—l)
and As = [Q, At + D, G,
For the concentration equation,
1 2¢p(cos pAY — 1) 2(cos pAY — 1) p
I=@+AT| = +5 0-K
Pr=e [SC (AY)? " (AY)? r?
_ua — ei*AX) 7V(e"””— 1)
Ax ¢ Ay ¢
2A7 (cos BAY — 1) UAT(1 — e*AX)
r=@|1+ — A, —————
q) (p |: Sc (AY)Z r AX
iBAY _
_ VAt(e 1) L 2S.AT (cos pAY — 1) 0
AY (AY)?
@1 =Asp +As0 (21)
where, Ag = 1+ 2 —“)S(ﬁ” D _ AtK, — Ut Axew) - V“(EA”;?Y’” and
A, = 25,A¢ COSPAY — 1)

(AY)?
Egs. (19)-(21) can be expressed in the Matrix form,
2 A Ay Az [y

or =10 A; As 0
(ol 0 A7 AG ]
ie.n=Tm

For obtaining the stability condition, Eigen values of the amplifi-
cationmatrix Trshould be finding out.Itis a forth order square matrix.
For this explicit finite difference solution, the dimensionless time dif-
ference At is very small i.e. tends to zero. Under this condition,

Az — 07A3 — 0,A5 — OandA7 —0

Ai 0 O
T'=10 Ay O
0 0 A

After simplification of the matrix T the Eigen values are follows,
the Eigen values of the amplification matrix T are obtained as
A1 = A1,Aq = /3 and Ag = /3. For stability test, each of the Eigen val-
ues must not exceeded unity in modulus. Under this consideration,
the stability conditions are as follows

IA1] < 1,|A4] < land|As| < 1

= AT, by =U4%,c; = | — V|4tandd, 72 M » then,

The coefficient of a, b and c are all non- negatlve So the maxi-
mum modulus of A;, As and Ag occurs when oAY = n7, where n
is integer and hence A;, A4 and Ag are real. The values of |A;|, |A4|
and |Ag| are greater when n is odd integer, in which case;

1
Aq :1—2[d1+a1<M+m)+bl+Cl]

Let, a,

1 16 a
A4:172[d1p—(1+?R)771Q+b1+61]
r

As=1-2 [d1 +b1+c1+ KC]
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To satisfied allowable values are A; =

Hence the stability conditions of the methods are,

241 ﬂ + Vﬂ + AT
(Ay)z AX AY

At 2 16
+VE+P_, (1 +?R>
AT

+—Q< land U£+V—+——

2 AX

M+i> <1LU

AT

Da AX

AT
(AY)?

AT

AX

[}
UL LU L

T
o

Q=0.10, E;=0.01, P=2.0
P,=0.71, ;= 0.60, K= 0.50

5 10

—»Y

—1,A4 =-1 andAG:—].
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With initial boundary condition and for the values of
AT = 0.005, AX =0.20 and AY = 0.25 then the problem will be
converged at P, > 0.164 and S, > 0.16. These converge solutions
are shown graphically in Figs. 3-15.

5. Results and discussion

The numerical values of non-dimensional velocity, temperature
and concentration within the boundary layer for different values of

N

o
©

o
®

e
3

o
[

o©
”

©
'S

o
w

o
N

o
o

(=]

®)

D= 0.03, S,= 0.60
D= 0.30, S,= 0.60
D,=0.30,8,=0.70
D= 0.50, S,= 0.80

Qj =0.10, M =0.10, S_=0.60,
Q=0.10, E;=0.01, P=2.0
P,=0.71, K= 0.50

o LIS JLALILLE RULIAE RIS LS RALLEE RAEE RARAN RARRE R

5 10

—’Y

15

Fig. 3. Illustration of (aw) Velocity profiles for different values of D, and (b) Temperature for different values of D, and S;.

1 0.4
E Gr=10.0, Gc=5.0, R=0.05, Da: 1.00,
o° Q; =0.10, M =0.10, $.=0.60, D,;=0.03, 035
o8 Q=0.10, E_= 0.01, P=2.0 03
0.7F Pr: 0.71, Sr: 0.60 Kr: 0.50
P os §jo2s K,=0.90
05F 0.2 K,=1.50
0.4 ;— 015 7Kr: 2.007 B B
03k Gr—l0.0, GC—S.O, R=0.05, Da_ 1.00,
02 ; 0.1 Ql =0.10, M =0.10, SC=O.60, Du:O‘03’
oaE 0.05 Q=0.10, EC: 0.01, P=2.0
= P.=0.71, S,= 0.60
ok ! 1 ! I 1 1 ! . . .
0 5 10 10 20 30
O 7 —>» Y
Fig. 4. Illustration of (a) Concentration profiles for different values of K; and (b) Sherwood number for different values of K..
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Fig. 5. Illustration of (a) Nusselt number for different Du and S; and (b) Sherwood number for different values of D, and S,.
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Fig. 8. Illustration of (a) Concentration profiles and (b) Sherwood number for P.

non-dimensional parameter have been computed by a FORTRAN

program. For

the steady-state solutions, all simulations have been

carried out up to dimensionless time, t=30. The phase angle
parameter, ®t = 0°, has been considered, however the effect of this
parameter shown in Fig. 13(b).

In Fig. 3(a) the velocity profiles increase in case of strong Darcy
number (D,) and become zero with in short range for same values
of Darcy number (D,). Table 1 provides the numerical value
obtained from the EFDM simulation for D, varies from 1.0 to 4.0.

This parameter

has a very strong physical significance on the fluid
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Fig. 11. Illustration of (a) Temperature profiles for different values of Q and (b) Temperature profiles for different values of Q;.

velocity. It represents the relative consequence of permeability of
the porous medium against its cross-sectional area. Porosity is
the fraction of the total volume that is taken up by the pore space.
To add an additional term in Darcy’s Law for inertial effects, per-
meability associated with that term. The unit’s values on it are dif-

ferent, this is because the porous flow always varying with
Reynolds number therefore inertial effects are practically non-exis-
tent Table 2.

Thermal diffusion (S;) denotes the quality or state of being
homogeneous of mixture composition, the concentration of parts
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Fig. 13. Illustration of (a) Nusselt number for R and (b) start point of velocity profiles for different values of wr..
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Fig. 14. Illustration of (a) Streamlines R = 0.05 (red solid line) and R = 2.00 (green dashed dot line) for line view and (b) Streamlines flood view.

in the regions of increment and decrement temperatures becomes (S;) is balanced by the counteraction of mass diffusion (D). The
different. The establishment of a mass gradients cause, in turn, effects of D, and S, on temperature distribution have been shown
ordinary diffusion, in a non-uniform temperature inhomogeneous in Fig. 3(b). Initially the temperature profiles increase on different
state is possible in which the separation effect of thermal diffusion values of D, and S; below the line X=1.10 and after that the
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Isotherm
0.9375

Fig. 15. Illustration of (a) Isotherms R = 0.05 (red solid line) and R = 2.00 (green dashed dot line) for line view and (b) Isotherms flood view.

Table 1
Curve to curve fluctuation for Fig. 3(a) at Y = 1.00.

Velocity profiles

Value of parameter Numerical value Increase/decrease in (%)

D,=1.00 5.49026 101.981% increase
D, =2.00 6.51007

D,=3.00 6.95590 44.583% increase
D, =4.00 7.20445 24.855% increase

temperature begins to decrease with the increase of D, and S;. The
profiles increase due to mass diffusion (D, ), because mass diffusion
(Dy) gradients impact on temperature profiles Table 3.

Table 2
Curve to curve fluctuation for Fig. 4(a) at Y = 2.00 and Fig. 4(b) at T =10.00.

Fig. 4(a) illustrates that the concentration profiles decrease in
case of strong value of chemical reaction parameter (K;) and
become zero with in short range for same values of K. Further-
more, the effects of chemical reaction parameter on Sherwood
number profiles have been shown in Fig. 4(b). Initially the Sher-
wood number is observed to be increase on K; below the line X =
0.4. However, far away from the plate it remains constant with
the increase of K, Table 4.

The different physical phenomena can affect the behaviour of
fluid flow such as thermal and mass diffusion. For example, con-
centration gradients can impact on heat transport and temperature
gradients impact on mass transport. In Fig. 5(a), the Nusselt num-
ber (N,) is observed to be decrease in case of different values of D,
and S,. Similar parameter effect on Sherwood number profiles have

Concentration profiles

Sherwood number profiles

Value of parameter Numerical value Increase/decrease in (%)

Value of parameter Numerical value Increase/decrease in (%)

K, =0.50 0.42928 97.297% Decrease K. =0.50 0.28380 8.24% increase

K;=0.90 0.35978 K;=0.90 0.31676

K.=1.50 0.29776 43.51% Decrease K. =1.50 0.35492 6.36% increase

K, =2.00 0.26430 24.365% Decrease K. =2.00 0.38088 5.192% increase
Table 3

Curve to curve fluctuation for Fig. 6(a) and (b) at Y = 2.00.

Velocity profiles

Temperature profiles

Value of parameter

Numerical value

Increase/decrease in (%)

Value of parameter

Numerical value

Increase/decrease in (%)

M =0.05 6.75607 6.409% Decrease M =0.05 0.76270 49.18% increase

M=0.10 6.69198 M =0.10 0.78736

M=0.30 6.44605 122.965% Decrease M=0.30 0.88100 43.18% increase

M =0.50 6.21583 115.18% Decrease M =0.50 0.96736 43.18% increase
Table 4

Curve to curve fluctuation for Fig. 7(a) and (b) at T =10.0.

Skin friction profiles

Nusselt number profiles

Value of parameter

Numerical value

Increase/decrease in (%)

Value of parameter

Numerical value

Increase/decrease in (%)

M =0.05 1.31794 31.02% Decrease
M=0.10 1.30243

M=0.30 1.24299 29.72% Decrease
M=0.50 1.18746 27.765%Decrease

M =0.05 —0.01676 8.15% Decrease
M=0.10 —0.02083

M=0.30 —0.03608 7.625% Decrease
M =0.50 —0.04983 6.875% Decrease
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also been studied in Fig. 5(b). However, the Sherwood number (S;)
profiles are found to be increase for different parametric values of
D, and S; Table 5.

The large value of magnetic parameter (M) generates a drag
force known as Lorentz force that could be competing against the
fluid motion. In Fig. 6(a), the velocity distribution is observed to
be decrease due to increase in magnetic parameter (M). However,
with the same effect of strong magnetic parameter a reverse phe-
nomenon is occurred in the temperature profiles (Fig. 6(b)) Table 6.

The MHD effects on Skin friction coefficient (C;) and Nusselt
number is exhibited in Fig. 7(a) and (b)respectively. Both Skin fric-
tion and Nusselt number profiles is detected to be decrease for the
increase of M Table 7.

The effect of order of chemical reaction on the concentration (¢)
and Sherwood number (Sp)profiles are illustrated Fig. 8(a) and
Fig. 8(b) respectively. The concentration profiles are observed to
be rises due to increase of P however an opposite phenomenon is
found in the Sherwood number profiles Table 8.

Figs. 9(a)-10(b) represents the effect of Prandtl number (P;)and
Schmidt number (S.) on velocity, temperature, Sherwood number
and The Nusselt number respectively. P; is the ratio of kinematics
viscosity to the thermal diffusivity which is physically very with
temperature for example, water P,=7.0 (At 20°C), oxygen

Table 5
Curve to curve fluctuation for Fig. 8(a) and (b) at Y =3.00 and 7 =3.0.

P, = 0.63 falls more quickly compared to air P, = 0.71. In addition,
Scis attributed to the ratio of the momentum diffusivity to the mass
diffusivity of the fluid. About the Prandtl number, P, << 1 delin-
eates the thermal diffusivity dominates. For the large values, P,
>>1, the momentum diffusivity dominates the behaviour. For
example, the liquid mercury points out that the heat conduction
is more consequential compared to convection, so thermal diffu-
sivity influences over others. However, for engine oil, convection
is very important in transferring energy from an area in compar-
ison to pure conduction, so momentum diffusivity has the power
and influence over others. Fig. 9(a) exhibits that the velocity pro-
files are decrease for P, >> 1. This behaviour could be attributed
to the relative thickness of the hydrodynamic boundary layer and
mass transfer boundary layer. Physically, the increase of Schmidt
number means a decrease of molecular diffusivity, which corre-
sponds to a decrease of the species boundary layer. It can be seen
that, temperature, Sherwood number and Nusselt number profiles
decreases due to the increase of Prandtl number (P;) and Schmidt
number (S.). Due to absorption of heat and radiation, temperature
near the plate increase rapidly and after some time it decrease to
zero.

Fig. 11(a) exhibits temperature profiles increase rapidly near
the plate below 0 = 5.0 and far away from the plate it decreases

Concentration profiles

Value of parameter Numerical value Increase/decrease in (%)

Sherwood number profiles

Value of parameter Numerical value Increase/decrease in (%)

P=2.00 0.29286 5.431% increase P=2.00 0.19967 1.347% Decrease

P=3.00 0.34717 P=3.00 0.18620

P=4.00 0.37345 8.059% increase P=4.00 0.17675 0.945% Decrease

P=5.00 0.38784 1.439% increase P=5.00 0.16959 0.716% Decrease
Table 6

Curve to curve fluctuation for Fig. 11(a) and (b) at Y = 2.00.

Temperature profiles

Value of parameter Numerical value Increase/decrease in (%)

Temperature profiles

Value of parameter Numerical value Increase/decrease in (%)

Q=0.10 0.46400 127.33% increase Q,=0.10 0.46400 96.925% increase

Q=0.70 1.22799 Q, =0.50 0.85170

Q=090 1.53188 151.945% increase Q;=0.80 1.03798 62.09% increase

Q=1.10 1.82237 145.245% increase Q;=0.90 1.09119 53.21% increase
Table 7

Curve to curve fluctuation for Fig. 12(a) and (b) at Y = 3.00.

Velocity profiles

Value of parameter Numerical value Increase/decrease in (%)

Temperature profiles

Value of parameter Numerical value Increase/ decrease in (%)

R=0.05 5.37875 451.56% increase R=0.05 0.60894 65.94% increase

R=0.10 5.60453 R=0.10 0.64191

R=0.20 5.95384 349.31% increase R=0.20 0.68997 48.06% increase

R=0.50 6.58510 210.42% increase R=0.50 0.76861 26.21% increase
Table 8

Curve to curve fluctuation for Fig. 13(b) at Y =0.00 point that means along the x-axis. Then we can find the starting
point of the curves for the oscillating plate phase angle (wt) at 0°, 30°, 45° and 60°.

Velocity profiles starting point of the curves due to phase angle, wt

Value of Parameter

Starting point numerical values

Increase/Decrease in (%)

wt=0° 1.00000
Tt =30° 0.86600
T =45° 0.70710
T =60° 0.50000

100.0% Decrease

11.236% Decrease
100.0% Decrease
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Fig. 16. Illustration of (a) Streamlines Q; = 0.10 (red solid line) and Q; = 2.00 (green dashed dot line) for line view and (b) Streamlines flood view.

0 1 2 3 4 5 6 7 8
(a) —> Y

Isotherm

(b)

Fig. 17. Illustration of (a) Isotherms Q; = 0.10 (red solid line) and Q; = 2.00 (green dashed dot line) for line view and (b) Isotherms flood view.

to zero for the strong heat sink (Q). The effect of radiation absorp-
tion parameter, Q1, on the temperature boundary layer thickness is
provided in Fig. 11(b). The temperature profiles show a pick near
0 =190 and it decreases to zero away from the plate for
increasingQ,.Therefore, the effect of radiation absorption on the
chemically reactive and naturally convective MHD fluid flow is
noteworthy. Basically, the molecular fluid particles are being
heated by radiation absorption and therefore the particles velocity
and buoyancy forces increase. The radiation absorption has some
proper characteristics depending on the frequency and wave-
lengths of the radiation. The transmission of light or of radiant heat
is allowed by the propagation of electromagnetic waves in the
ether. Electromagnetic waves have similar characteristics to televi-
sion and radio broadcasting waves they only differ in wavelength.
All electromagnetic waves travel at the same speed; therefore,
shorter wavelengths are associated with high frequencies. Since
fluid is submerged in the ether, due to the vibration of the mole-
cules, fluid can potentially initiate an electromagnetic wave. All
bodies generate and receive electromagnetic waves at the expense
of its stored energy.

The effects of presence of thermal radiation (R) on the velocity
and temperature profiles are shown in Fig. 12(a) and (b). It can be
concluded that both profiles increase due to increase in R.

Moreover, the Nusselt number profile is also found increases
due to increase in R Fig. 13(a). The effect of the variation of phase
angle, wt (ranges from 0 to 60°) on fluid velocity is shown in
Fig. 13(b). The velocity profiles decrease due to increase in wt. In
all cases the velocity decays to zero as one move away from the
oscillating plate. For larger values of wt the flow is dominated by
inertial effects and the boundary to the flow field is restricted to
a shallow layer near the moving plate, the fluid’s inertia desires
to keep the fluid at rest. For smaller values of wt, viscous effects
dominate, and the velocity perturbation caused by the moving
plate is felt further inside the large viscosity, the plate can drag
more fluid with it. Consequently, the velocity naturally falloffs
more slowly as one move away from the plate. For the velocity
structure in the oscillating fluid flow boundary layer, Fig. 13(b) is
a graph (admittedly somewhat complicated) that shows flow
velocity in the laminar oscillatory boundary layer start with differ-
ent point for the change of phase angle, wt (ranges for 0-60°). It
can be seen that, the phase angle has an effect on the momentum
boundary layer thickness and it is significant near the frontier.

For an improved visualization of fluid fields, streamlines can be
used. It represents the velocity direction of fluids. The streamlines
can be obtained by drawing lines tangent to the flags. They are a
rather mathematical object. They can be visualized by implanting
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little flags inside the fluid and observing their orientation. The
boundary layer system of change can be shown by an isotherm,
where the temperature remains constant (AT = 0). An isotherm at
0 °C (the freezing point of water) is called the freezing level. This
phenomenon occurs when a system is in contact with an outside
thermal layer (heat bath), and the change happens gradually
enough to allow the system to continually adjust to the tempera-
ture of the boundary layer through heat exchange. In this model,
we are solving non-dimensional equation after different transfor-
mations. For this reason, X and Y-axis have no unit values. It indi-
cates with mash point different. With the stream and isotherms
(line view) we can define the difference of boundary layer for dif-
ferent parameters. The legend values of stream and isotherms
(flood view) indicate the contours levels. The development of
streamlines and isotherms are presented in Figs. 14-17. It can be
observed that, momentum boundary layer and thermal boundary
layer increases due to the increase of thermal radiation (R).
Streamlines and isotherms is presented for the increase of radia-
tion absorption (Qq) in Figs. 14-17. Furthermore, the momentum
and thermal boundary layer are observed to be increases due to
the increase of radiation absorption parameter.

6. Conclusions

The Numerical solutions for high speed MHD fluid flow near a
moving semi-infinite porous plate with thermal radiation, heat
sink, chemical reaction, cross diffusion is analysed, and the follow-
ing concluding remarks has been observed:

e Velocity profiles increases with the increase in Darcy number,
thermal radiation, radiation absorption parameter and com-
bined Prandtl and Schmidt number respectively whilst it
decreases due to increase in magnetic parameter. Furthermore,
varying of phase angle parameter led the initial point of the
velocity curve changes.

e Temperature profile increases due to the increase of magnetic

parameter, thermal radiation, cross diffusion, heat sink and

radiation absorption respectively whilst it decreases with the
increase in the combined Prandtl and Schmidt number.

Concentration profiles decreases with the increase of chemical

reaction parameter whereas it increases with increase in order

of chemical reaction parameter.

e Skin friction coefficient profiles was observed to be decrease

with increase of magnetic parameter.

Nusselt number profiles decrease with the increase in magnetic

parameter, cross diffusion, and combined Prandtl number and

Schmidt number respectively whilst it increases with the

increase of thermal radiation parameter.

Sherwood number profiles increase with the increase of chem-

ical reaction, cross diffusion and combined Prandtl number and

Schmidt number respectively whereas it decreases for the

increase in the order of chemical reaction.
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